PHYSICAL REVIEW E VOLUME 61, NUMBER 6 JUNE 2000

Phase transition in the Takayasu model with desorption
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We study a lattice model where particles carrying different masses diffuse and coalesce upon contact, and
also unit masses adsorb to a site with rqter desorb from a site with nonzero mass with ratén the limit
p=0 (without desorptiojy our model reduces to the well studied Takayasu model where the steady-state single
site mass distribution has a power-law tB{{m)~m~7 for large mass. We show that varying the desorption
rate p induces a nonequilibrium phase transition in all dimensions. For fixetere is a criticab.(q) such
that if p<p.(Qq), the steady-state mass distributid?(;m)~m~" for largem as in the Takayasu case. Hor
=p.(q), we findP(m)~m~ " wherer, is a new exponent, while fgv>p.(q), P(m)~exp(—nm/m*) for large
m. The model is studied analytically within a mean-field theory and numerically in one dimension.

PACS numbds): 05.40—a, 64.60.Ht, 68.45.Da

[. INTRODUCTION proaches a time-independent power law distributim)
~m~ " for t—oo [since f(0)~0O(1)] for any nonzero ad-
Many systems in nature, ranging from reaction-diffusionsorption rateq. The exponentr is independent of] and is
systems to fluctuating interfaces, exhibit nonequilibriumknown exactly[2], 7=4/3 in one dimension and=3/2
steady states with a wide variety of phases. Of particulawithin mean-field theory.
interest are the self-organized critical systems where differ- The steady-state mass distribution in the Takayasu model
ent physical quantities have power-law distributions in thehas the same power-law decay for any nonzero adsorption
steady state over a wide region of the parameter spfice rate g and does not undergo any phase transition. In this
Self-organized criticality has been studied in a variety ofpaper we show that if we introduce an additional process of
model systems ranging from sandpiles to earthquakes. A padesorption of unit masses with rgtén the Takayasu model
ticularly simple lattice model due to Takayasu, where massegve call this the in-out modgla rich steady-state phase dia-
diffuse, aggregate upon contact, and adsorb unit masses frogiam emerges in thp-q plane. In particular we show that
outside at a constant rate, was shown to exhibit selfthe system undergoes a nonequilibrium phase transition
organized criticality[2]: the steady-state mass distribution across a phase boundapy(q). Nonequilibrium phase tran-
has a nontrivial power-law decay for large mass in all dimensitions between steady states have been studied extensively
sions[2]. This model initially generated a lot of attention as in recent years in a variety of systems. Examples include,
it was a simple exactly solvable model of self-organizedamongst others, active-absorbing phase transitions in reac-
criticality with close connectiong3] to other solvable mod- tion diffusion system$19], roughening transitions in fluctu-
els such as the Scheidegger river mddg) the voter model ating interfaceq20], phase transitions in driven diffusive
[5], and the directed Abelian sandpile modi6]. Recently lattice gas model§21], wetting transitions in solid-on-solid
there has been a renewed interest in this model as simphlaodels[22], boundary driven transitions in one-dimensional
variants of the Takayasu model have been found useful imsymmetric exclusion procesg&8], and Bose-Einstein-like
modeling the dynamics of a variety of systems, includingcondensation in models of aggregation and fragmentation
force fluctuations in granular systems such as bead gagks [24,25. However, we show below that the mechanism of the
river networks[8], voting systemg9,10], wealth distribu- phase transition and the associated critical properties in the
tions [11], size distributions of fish schoold?2], inelastic  in-out model are very different from those of other models
collisions in granular gasd44], the generalized Hammers- mentioned above.
ley proces$13], particle systems in one dimensiftb], and There are quite a few physical systems where our in-out
various generalized mass transport modi&g. model may find applications. In nature there exist a variety
In the Takayasu model, each site of a lattice has a nonef systems ranging from colloid6] to polymer geld27]
negative mass variable. Starting from an initial random diswhere the basic constituents of the system diffuse and coa-
tribution of masses, each mass hops to a nearest neighbor siégsce upon contact. For example, in a polymer gel the basic
(chosen at randojrand aggregates with the mass there withconstituents are polymers of different sizes which diffuse in
rate 1. In addition, a unit mass is adsorbed at every site witla solution and when am-mer comes in contact with an
rate g. While the first move tends to create big masses vian-mer, they aggregate to form am-n)-mer[27]. Similarly
diffusion and aggregation, the second move replenishes thduring the growth of a thin film on an amorphous substrate
lower end of the mass spectrum. At large titpghe mass (such as bismuth on carbprtlusters or islands of atoms can
distribution at any site has the scaling behaviB{m,t) diffuse as a whole and when two of them come closer they
~m~7f(m/t%) with §=1/(2— ) [17,18. The interesting coalescd28]. A zeroth order approach to model the dynam-
point is that even though the average mass per site increasies of these systems would be to replace each cluster by a
linearly with time,{m)~t, the mass distributio®(m,t) ap-  point particle(ignoring its shapecarrying a positive mass
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which indicates its size or number of atoms. When two par-braically for largem, P(m)~m™" but with a new critical

ticles coalesce their masses add up. In addition many of thegxponentr, that is bigger than the Takayasu exponenfor

systems arepenin the sense that they can exchange basip>p.(q), we find that P(m)~exp(—m/m*) for large m,

units with the adjoining environment. For example, duringwhere m* is a characteristic mass that diverges if one ap-

the growth of a film on a substrate, single adatoms mayroachesp.(q) from the p>p.(q) side. The critical expo-

adsorb on the substrate from the outside vapor or desorb infgent 7, is the same everywhere on the critical lipg(q).

the vapor from the substrate. We attempt to incorporate thesehis phase transition occurs in all spatial dimensions includ-

processes on a lattice in the in-out model and show that eveing d=1.

this simple model has a very rich steady-state phase diagram. It is easy to write down an exact evolution equation for

We had introduced this model in an earlier publicati@dd]  the mean masém)(t) per site. Since the diffusion and ag-

and some results were briefly mentioned. In this paper wgregation move does not change the total mass, the only

present a detailed analysis of the model. contributions to the time evolution gfm) come from the
The paper is organized as follows. In Sec. Il, we defineadsorption and desorption processes. It is then evident that

the in-out model precisely and summarize the different

phases and the transitions between them. In Sec. Il we solve d(m)

the model analytically within mean-field theory. In Sec. IV ——=q-—ps(t), 1)

we present the numerical results in one dimension and dis- dt

cuss a scaling theory which provides scaling relations be\'/vhere s(t) is the probability that a site is occupied by a

mﬁeg g:rfr?rr:ar\]rt C;';'gi gézﬁgggi'o\flvg ggnclljléiio'gssec' Vnonzero mass. The first term on the right-hand side of the
y penq ' above equation clearly indicates the increase in mass per site
due to the adsorption of unit mass. The second term quanti-
Il. THE IN-OUT MODEL fies the Ipss.in mass per site due to the desorption of unit
mass taking into acount the fact that the desorption can take
For simplicity we define the in-out model on a one- place from a site only if the site is occupied by a nonzero
dimensional lattice with periodic boundary conditions; gen-mass. Let us fiyp and varyq. As long asg<q.(p), it turns
eralizations to higher dimensions are straightforward. Eaclput that in the long time limit—oe, the two terms on the
site of a lattice has a non-negative mass variahlee0.  right-hand side of the above equation cancel each other and
Initially eachmy; is chosen independently from any well de- the occupation density reaches the asymptotic time-
fined distribution. The dynamics proceed as follows. A site independent values=q/p. This indicates that the average
is chosen at random and then one of the following events camass per site;m) becomes a constant in the long time limit.
occur. In fact, we show below that in this phase, the steady-state
mass distributionP(m)~exp(—nVm*) for large m with a
finite first moment{m). We call this phase the “Exponen-
tial” phase. However, ifqg>q.(p), the occupation density
reaches a steady-state vakmuch thas<q/p. As a resultin
) the long time limit, the second term on the right-hand side of
prowdeqlm;l. . . . Eq. (1) fails to cancel the first term and the mean mass per
(3) Diffusion and aggregationWith probability 1/p+q e (m)(t) increases linearly with time(m)~ (q— ps)t.
+;), the massmi_at sitei moves to a nearest.neighbor site However, as we show below, even though the mean mass
[either (—1) or (i+1)] chosen at random. If it mOVes 10 @ yiyerges in this phase 4s- =, the mass distribution reaches
site that already has some patrticles, then the total mass Juétsteady state?(m) ~m~ 7 for largem where is the Taka-
adds up; thusn—0 andm;.,— My +m;. __yasu exponentwhich is always less than 2 so that the mean
If the site chosen is empty, only adsorption can occur W'thmass diverges Hence we call this entire phase the “Taka-
probabilityg/(p+qg+1). yasu” phase.
The in-out model has only two parametgrandg. The
guestion we would like to address is this: For giyeandq,
what is the single site mass distributi®{m) in the steady
state? Note that in the limg=0 (i.e., without the desorption We first analyze the model exactly within the mean-field
proces$ our model reduces to the Takayasu model menapproximation, ignoring correlations in the occupancy of ad-
tioned in the Introduction. jacent sites. In that case we can directly write down equa-
While the Takayasu modékrero desorptionp=0) does tions forP(m,t), the probability that any site has a masst
not have a phase transition in the steady-state, we find thainme t,
introducing a nonzero desorption rafe induces a rich
steady-state behavior in theq plane. In fact, we find that dP(m,t)
there is a critical lingp(q) in the p-q plane. For fixedy, if -
we increasep from 0, we find that for allp<p.(q), the dt
steady-state mass distribution has the same largpehavior +qP(m—10)+P*P, m=1 )
as in the Takayasu case, i.€(m)~m~" where the expo-
nent 7 is the Takayasu exponent and is independent.of dP(O1)
Thus the Takayasu phase is stable up¢o For p=p.(q), o
we find the steady-state mass distribution still decays alge- dt (A +s)POY+pPLY+s(D). ©)

(1) Adsorption With probability g/(p+g+1), a single
particle is adsorbed at sitethusm;—m;+1.

(2) Desorption With probability p/(p+qg+1), a single
particle detaches from and leaves sifethus m—m,—1

Ill. MEAN-FIELD THEORY

=—(1+p+g+s)P(mt)+pP(m+1t)
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Here P* P=2m,=lP(m’,t)P(m—m',t) is a convolution (i) For smallq (with a fixed p), we first assume that the
term that describes the coalescence of two masses(@pd Mean masgm) reaches a time-independent constantt as
=3 ,,_1P(m,t) denotes the probability that a site is occupied— - This assumption will be justified posteriori Then
by a nonzero mass. from Eq. (1) it follows that the occupation density also
The above equations enumerate the possible ways iffaches a steady-state valsesq/p. Substituting this in the
which the mass at a site might change. The first term in EgeXpression folA(z) in Eq.(5), the three roots oA (z) =0 are
(2) is the “loss” term that accounts for the probability that a z=1 andz, ;=(p+2+2\p+1)/q. Then from Eq.(4) it
massm might move as a whole or desorb or adsorb a unitfollows that the only branch cut singularities Qf(z) are at
mass, or a mass from the neighboring site might move to the, andz; with z;>z,>1 for smallqg. Therefore the branch
site in consideration. In this last case, the probability of occut atz, essentially controls the large-behavior ofP(m)
cupation of the neighboring site(t) multiplies P(m,t)  when the contour in Ed6) is deformed and by analyzing the
within the mean-field approximation where one neglects théntegral around this cut we find that for large
spatial correlations in the occupation probabilities of neigh-
boring sites. The remaining three terms in EB) are the P(m)~exp — m/m* )/m3?2 @
“gain” terms enumerating the number of ways that a site
with massm’#m can gain or lose mass to make the final with m* =1/1nz,. SinceP(m) decays exponentially in this
massm. The second equation E(B) is a similar enumera- phase(m) is also finite and nonzero thus justifying the as-
tion of the possibilities for loss and gain of empty sites.  sumption made in the beginning. In this phase the unknown
To solve the equations, we compute the generating funcfunction s is therefore exactly given as=q/p. Note, how-
tion, Q(z,t)==_,P(m,t)z" from Eq. (2) and setdQ/dt  ever, that this analysis is valid as long as>1 and the
=0 in the steady state. We also need to use(Bto write  characteristic mass"* diverges asz, approaches 1 from
P(1t) in terms ofs(t). This gives us a quadratic equation above.
for Q in the steady state. Choosing the root that corresponds (ii) As the value ofj is increasedfor fixed p) the rootsz,

to Q(z=0)=0, we find andz; decrease, until at a critical valug(p), the value of
Z, just reaches unity. The double roa; (andz,) atz=1 of
22Q(2)=p(z—1)+qz(1—2)+2s7— \(z— 1)A(z2), A(z) then leads to a branch cut singularity of order 3/2 in
(4 Q(2) in Eq. (4), which in turn implies
where P(m)~ m- 52 ®)
A(z)=p%(z—1)+9%2%(z—1)—2pqzz—1) This power-law decay characterizes the critical point and the
conditionz,=1 determines the locus of the critical line in
—4qz(z—sp/q). ®)  the p-q plane,
Note that the occupation densiyn the above expression of
Q(2) is yet to be determined. The steady-state mass distri- de(p)=p+2—2yp+1. 9
bution P(m) can be formally obtained fro@(z) in Eq. (4) o
by evaluating the Cauchy integral, The value ofs is given exactly bys=q./p.
(iii) As qis increased furtherq>q.(p)] for fixed p, the
mean mass per sitgm) does not reach a time-independent
P(m)= 11 Q@ © value in the steady state, but increases indefinitely with time.

Consequently we cannot use the relat&nag/p anymore.
However,P(m) reaches a time-independent distribution. So
over a contoutC, encircling the origin in the complex plane. the question is what is the selection principle that determines
This expression foP(m), however, will contain the yet to the unknown functiors in this regime?

2 17i Cozm+1

be determined unknown quantigy In fact, determining is Note that atq=q.(p), the two rootsz; andz, of A(z)
the most nontrivial part of the mean-field calculation as we=0 coincided,z;=2z,=1 andz;>1. As q increases further,
show below. since we do not know whatis a priori, the exact locations

In order to extract the largey behavior ofP(m) from Eq.  of the three roots ofA(z) =0 in the complex plane are also
(6), one needs to deform the contoGy, so that it goes unknown. However, sincé(z) is a polynomial with real
around the branch cut singularities of the functi@fz).  coefficients, ifzis a root ofA(z) =0, so must be its complex
From Eq.(4), it is evident that such singularities occurzat conjugatez*. Thus asq increases beyond.(p), there are
=1 and also at the roots df(z) =0 whereA(z) is given by  two possibilities. The first possibility is that all the three
Eq. (5). SinceA(z) is a cubic polynomial irg, it has three roots of A(z)=0 are real and distinct. But in that case,as
roots z,, z,, and z;, each of which can be determined in increases slightly beyond.(p), at least one of them must
terms of the unknown quantity, become less than 1. This, however, would lead to an expo-

We now analyze the larger behavior ofP(m) in differ-  nential growth ofP(m) for largem and hence is ruled out.
ent regions of the-q plane. Let us fix the value g and  The second and only possibility is that one of the three roots
increaseq from 0. A similar analysis can be carried out for must be real while the other two are complex conjugates of
fixed g as a function ofp. As we increasey from 0, we  each other, i.e.A(2)=(z—2z.)(z—z¢)(z—z3) wherez; is
encounter the following three regimes. real andz. in general is complex with its real part less than
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FIG. 2. The phase diagram of the in-out model in g plane.
The dotted line denotes the mean-field phase boundgy) =p
+2-2.p+1 and the triangles mark the numerically obtained criti-
cal points in 1D.

FIG. 1. The functiors(q) as a function ofj for p=1 (shown by
the solid ling within the mean-field theory. It deviates from the
dotted line[s(q)=q] for g>q.=3—22.

1. However, if the imaginary part @ is nonzero, this again
can be shown to lead to an exponential divergence (o)
for largem. Therefore, we are led to the conclusion that
must be real and thus(z) =0 must haveloubleroots atz.,
i.e., A(2)=(z—z.)%(z—z3) with z; real. In summary we
conclude that fog>q.(p), zz remains greater than 1 and
the two rootsz, = z,=z, continues to be coincident and real
but the common value, decreases below 1 agincreases
beyondq> . This nontrivial “root sticking” condition
de%/ermizesqtcrgg)unknown quantisyfor q>qc(p£)]. This con- “height” of the interface becc_)mes a constanttasoc, Wh"?
dition of double roots can be easily implemented by demand©’ q?qc(p), thpj‘ averagti he'gm‘@ Increases Imgarly with
ing the two conditionsA(z.)=0 andA’(z,)=0 whereA’ vel_ocr[y v. The v_elocny v, defined more precisely as
=dA(z)/dz. Also using the relationA(z)=(z—z.)?(z =lim_..(m)/t), is 0 for g<qc(p) and nonzero forg

—23) in Eq. (4), we find that the lowest branch cut singular- ~ 9c(P). For g slightly bigger tham(p), v~[d—dc(p) ",

ity of Q(z) is atz=1. This order 1/2 singularity then leads to ¥vherey is a critical exponent independentmfFor example,

the following asymptotic behavior d®(m): or p=1, we find from Eq.(11), v~=[q—qc(1)1%/(6v2
—8), indicating thaty=2 within mean-field theory.

and forq>q.=3-24/2, s(q) is given by the real positive
root of the cubic equation in Eq11).

Note that for fixedp, if q>q.(p), the steady-state value
of s(q) (as determined from the “root-sticking” conditions
is less thang/p and hence from Eq(l), we find that the
mean mass per site increases linearly with tigmey~uvt for
larget. If one interprets the mass profile as the height of an
interface (see Sec. Y then for q<gq.(p), the average

P(m)~m 372, (10)
IV. NUMERICAL RESULTS IN ONE DIMENSION

Thus this entire phaseg>q.(p), is characterized by the AND SCALING THEORY
same power-law decay ¢t(m) as in the mean-field Taka-  5ying completed the mean-field calculations we now
yasu model which, as mentioned earlier, corresponds to the, 1, 19 one dimensiorilD). While the Takayasu modep(
zero-desorptionfg=0) limit of‘f)ur model. . " =0) is exactly solvable id=1 [2], the same technique

As mentioned above, the “root-sticking” condition also \norrunately does not work fqr>0. Hence for nonzerg,
determines quite nontrivially the occupation denstior 4 e had to resort to numerical simulationsdr: 1. The quali-
=>0c(p) for fixed p. To determines explicitly for g>0c(P)  tative predictions of mean-field theory, namely the existence
using this condmon, let us f|>p=.1 for simplicity 8VeN  of 3 power-law (Takayash phase[P(m)~m~ 1] and a
though the calculation can be carried out for any arbit@ry phase with exponential mass distribution, with a different
From Eq.(9), we find gc=3-2y2 for p=1. We f"S“t sub-  critical behavior at the transitiopP(m)~m™ ], are found
stitute the expression fok(z) from Eq. (5) in the "root- {5 pold in 1D as well. Figure 2 shows the results of numeri-
sticking” conditions, A(z;)=0 and A'(z;)=0. We then 5| simulations for the phase diagram along with the mean-
eliminate z; from these equations and firelq) for >3  field prediction[Eq. (9)] and Fig. 3 displays the numerical

—24/2 as the only positive root of the cubic equation data for the decay of the mass distributiBm) in the two
phases and at the transition point. The values obtaimred,
3_(q2_ 2_ (3 2 =4/3 (same as the exactly solvabjg=0 case¢ and 7.
1657~ (g7~ 129+24)s°~ (q7+ 597+ 57+ 19)s =1.833, are quite different from their mean-field values
+(g+50°+399—2)=0. (11 =3/2 and7.=5/2, reflecting the effects of correlations be-
tween masses at different sites.
Thus we can determine the unknown quansitgxactly ev- If the phase boundary is crossed by increagijrigr fixed

erywhere in thep-g plane. In Fig. 1, we plot the function P, the Takayasu phase is obtained €prd.. As a function
s(q) for fixed p=1. Forq=q,=3-22 we haves(q)=q of the small deviatiorg=q—q. and large time, the mass
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FIG. 3. The steady-state mass distributiem) vs m for the
in-out model in 1D. The value of is kept fixed atg=1 and the
data are shown for three representative values, oéspectivelyp
is less than, equal to, or greater thay=2.35.

distribution P(m,q,t) is expected to display a scaling form

for largem,

~ 1 ~, Mm
P(m,q,t)~mY(mq¢,t—Q) (12)

in terms of three unknown exponents «, 7., and the two
variable scaling functiory. All other exponents then can be
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FIG. 4. The velocityv as a function ofg for fixed p=2.35 in
1D. The velocity is zero fog<q,=1.0 and increases ag{q.)Y

for g>q, with y=1.47 ind=1.

~ 1 ~ m
P(m,q,t)~m—5/2Y mq,tT,g . (13

We have determined the corresponding exponentd in
=1 numerically. The critical exponent=1.83 has already
been mentione¢see Fig. 3. In Fig. 4 we plot the velocity
as a function ofj for fixed p=2.35. The velocity is zero for
g=<(.~1.0 and increases as a power law; (q—q.)Y for

smallq=(q—q,). We findy=1.47. Note that since, is not
known exactly, this exponent is difficult to determine nu-
merically and is subject to large error bars. We also find that
at the critical pointgc~1, the mean mass grows &m)

related to these three exponents via scaling relations. We t* with £=0.12. Note the difference from the mean-field

give some examples below.

(@ Consider g>0 and t—o limit. Then P(m,q)
~(1/m™)Y(mq?,0). But we know that forq>0, in the
steady staté®(m,q)~m~ ", wherer is the known Takayasu
exponent. This forces the scaling functidffx,0)~x” for
largex such thatP(m,q) ~q®?/m™?, indicating y= r,— 7.

(b) Consider agaim>0 and finite but large. The mean
mass per site(m)=mP(m,q,t)dm~q’t, wherey is the
velocity exponent. Using the scaling form Bf we findy
=¢d[l—a(2—71)]/ .

(c) Next we consider the critical poing=0. Using the
scaling form, we find that the mean mgss)~t¢ for larget
where {=a(2—7.) provided 7.<2. If 7.>2 (as in mean-

field theory, {=0. Also, the root mean square mass fluctua-

tions at the critical pointg= \{(m—(m))%)~\(m?)~t# for
large t with 8= a(3— 7.)/2. Note that for larget, (m?)

>(m)? indicating that fluctuations grow faster than the mean

as time increases.

Within mean-field theory, by analyzinB(m) explicitly
for >0, we find P(m,q)~qg/m*? and alsor.=5/2. From
(a) above, this immediately givegp=1 andy=1, indicat-
ing ¢=1. Also, we had shown before that the velocity ex-
ponenty=2 exactly within mean-field theory. Using=2,
7.=5/2, and¢=1 in (b), we geta=2/3. Sincer,=5/2>2,
we note from(c) that /=0. Also we find the fluctuation
exponen{3= 1/6 from the scaling relation ifc). Thus within
mean-field theory, we find

theory where{(m) does not grow with time at the critical
point ({=0). To measure the fluctuations at the critical
point, we performed finite-size studies of the time-dependent
width W2(t,L)==F_,(m,—(m))?/L at the critical point,
whereL is the system size. This is expected to obey the
scaling formW=tAZ(t/L?); the value ofz is expected to be

2 as the movement of masses is diffusive. Figure 5 shows the
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FIG. 5. Scaling plots of the finite-size studies of width versus
time for four different system sizeds=16, L=32, L=64, andL
=128 at the critical poinp,~2.352 with fixedg=1. The width is
expected to follow the scaling formW~t#Z(t/L?). The best col-
lapse is obtained foB8=0.358 withz=2.



6342 MAJUMDAR, KRISHNAMURTHY, AND BARMA PRE 61

scaling plot of W/t? versust/L? for four different system point. Evidently, the lack of mass conservation in the in-out
sizesL=16, 32, 64, and 128 at the critical poipt=2.35 for  model is responsible for the absence of the infinite aggregate
fixedg=1. We fixz=2 and find the best collapse of data for in its highq phase, as well as the change in the power ito
B=0.358. These exponent estimatesdin 1 are consistent the Takayasu phase ang at criticality.

with the scaling relations mentioned (8)—(c). Another interesting difference between the conserved and
the in-out model is the effect of a preferred direction for the
V. SUMMARY AND DISCUSSION motion of massesa mass at siteé hops with a higher prob-

ability toi —1 thani+1). We have checked that such a bias
In this paper we have studied a simple lattice modelgoes not change the critical exponents of the in-out model.
where masses diffuse and aggregate with rate 1, unit massggwever, for the conserved mass model, the bias in direction
adsorb at any lattice site with ratg and unit masses desorb changes the value of the exponents at the transition and in
from a S|te(proy|ded the site is oc_:cupled by a mpesth rate {10 aggregate phaga4].
p. Forp=0 (without the desorption processour model re- The phase transition in the in-out model has some inter-

duces to the well studied Takayasu model where the steadyi o impjications for nonequilibrium wetting transitions if

state smqle site mass distribution has a power-law decag(Ne interpret the configuration of masses as an interface pro-
P(m)~m~" for large m for any nonzerog. We show that

/ . . S file regardingm; as a local height variable. Although the
varying the desorption ragginduces a nonequilibrium phase g LS . .

" " _ dynamics of the mass profile in our in-out model is not
transition at a critical valuep=p.(q). For p<p.(q), . . . .
P(m)~m~" for largem as in the Takayasipi=0) case. For physical when mterp.rgted.as interface dynamics, ngvgrthe—
p=p.(q), P(m)~m~" where 7, is a new exponent and !ess the phase transmorj_ in our model can pg quahtatlv_ely
P(m)~exp(—mm*) for p>p.(q). We have solved the interpreted as a nonequilibrium wetting transition of the in-
model analytically within the mean-field theory and calcu-t€rface. In the in-out model, the fact that the mass at each site
lated all the mean-field exponents exactly. In one dimensiorS necessarlly.nop—negatlve translates into the. restrlctllon that
we have computed the exponents numerically. We have ald§e mass profile is always above a wall at a fixed he{ght
presented a general scaling theory. our case 0). The presence of this constraint is the key factor

Our model generalizes the Takayasu model and exhibits 81 the wetting transition. At fixegh, as we increase, the
nontrivial phase transition. There was an earlier generalizamean height(m) does not grow with time as long a$
tion [29] of the model where instead of carrying positive <q.. This is our “Exponential” phase where the mass or
masses, the diffusing particles carried char@sf either the interface profile is bound to the substrate at zero height.
sign while a random charge drawn from an arbitrary dis- This phase is also “smooth” as the mean square height fluc-
tribution, was added with ratg to a lattice site. In this tuation does not grow with system size. Fprq., the in-
“charge” model, the steady-state single site charge distributerface unbinds from the substrate and the mean héight
tion P(Q) was found 29] to have a power-law taflas inthe ~ ~yt grows linearly with time with a velocity. This phe-
mass case P(Q)~ Q™7 for large positiveQ when the mean nomenon is similar to the “wetting” or “depinning” of in-
charge injected was positivé) )>0 whereas for{(l1)=0, terfaces in general. In this “wet” phagéhe Takayasu phase
P(Q)~Q™ " for large positiveQ. It was shown that the in our mode), the interface is rough. Unlike recently studied
exponent7;=5/3 in d=1 and ;=2 within mean-field models of nonequilibrium wetting, where the interface in the
theory [29]. Though this change of exponent at a critical growing phase is self-affing22,30], our model describes a
value(l)=0 is similar to that in our model qualitatively, the much rougher interface fay>q.. At the transitiong=q.,
exponentr, of the in-out model is very different from that of though, the interface is self-affine with a roughness exponent
the charge model. This difference can be traced back to thg=z8=0.7.
mass positivity constraint in the in-out model, i.e., the de- There are various open questions that remain to be settled.
sorption of a unit mass can take place from a lattice site onlyn this paper we have only studied the phase transition in the
if the site has a nonzero mass. steady-state single site mass distribution function. It would

In the in-out model, the total mass is not conserved due tbe very interesting to study the spatial correlations between
the moves involving adsorption and desorption of unit massmasses at different sites and to track the behavior of a mass-
It is interesting to ask what would happen if the desorption ofmass correlation function as one crosses the phase boundary
a unit mass from a site were followed by adsorption at an the p-q plane.
neighboring site, so that the total mass would be conserved Also in this paper we have only studied the simplest
in every move. This was investigated using a lattice modemodel where the rates of adsorption, desorption, and hopping
[24] and earlier within a rate equation approa2b]. In this  are constants and independent of particle mass. An important
conserved-mass model there is also a phase transition, but gfiestion is whether this phase transition would persist for
a different character. It was found that there is an exponentiageneral mass-dependent rates. In earlier W8 a model
phase(at a high desorption-adsorption rgteseparated by a with aggregation, adsorption, and desorption was studied,
critical line from a phase with a power-law mass distributionbut no transition to a power-law phase was found; the differ-
P(m)~m~ Teonserved This distribution coexists with an infinite ence is traceable to the fact that in that model, the rate of
aggregate which accommodates a finite fraction of the totalemoval of mass is proportional to the mass, unlike the unit-
mass—a real space analog of Bose-Einstein condensationass desorption process considered in the in-out model. It is
[24]. The exponentryy,servegWas found to be 5/2 within therefore highly desirable to identify the class of models with
mean-field theory{24,25 and =2.33 in 1D[24], and the mass-dependent rates where the phase transition described
same exponent was found to descriBém) at the critical here will persist.
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