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Phase transition in the Takayasu model with desorption
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We study a lattice model where particles carrying different masses diffuse and coalesce upon contact, and
also unit masses adsorb to a site with rateq or desorb from a site with nonzero mass with ratep. In the limit
p50 ~without desorption!, our model reduces to the well studied Takayasu model where the steady-state single
site mass distribution has a power-law tailP(m);m2t for large mass. We show that varying the desorption
ratep induces a nonequilibrium phase transition in all dimensions. For fixedq, there is a criticalpc(q) such
that if p,pc(q), the steady-state mass distribution,P(m);m2t for largem as in the Takayasu case. Forp
5pc(q), we findP(m);m2tc wheretc is a new exponent, while forp.pc(q), P(m);exp(2m/m* ) for large
m. The model is studied analytically within a mean-field theory and numerically in one dimension.

PACS number~s!: 05.40.2a, 64.60.Ht, 68.45.Da
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I. INTRODUCTION

Many systems in nature, ranging from reaction-diffusi
systems to fluctuating interfaces, exhibit nonequilibriu
steady states with a wide variety of phases. Of particu
interest are the self-organized critical systems where dif
ent physical quantities have power-law distributions in
steady state over a wide region of the parameter space@1#.
Self-organized criticality has been studied in a variety
model systems ranging from sandpiles to earthquakes. A
ticularly simple lattice model due to Takayasu, where mas
diffuse, aggregate upon contact, and adsorb unit masses
outside at a constant rate, was shown to exhibit s
organized criticality@2#: the steady-state mass distributio
has a nontrivial power-law decay for large mass in all dim
sions@2#. This model initially generated a lot of attention a
it was a simple exactly solvable model of self-organiz
criticality with close connections@3# to other solvable mod-
els such as the Scheidegger river model@4#, the voter model
@5#, and the directed Abelian sandpile model@6#. Recently
there has been a renewed interest in this model as sim
variants of the Takayasu model have been found usefu
modeling the dynamics of a variety of systems, includi
force fluctuations in granular systems such as bead packs@7#,
river networks@8#, voting systems@9,10#, wealth distribu-
tions @11#, size distributions of fish schools@12#, inelastic
collisions in granular gases@14#, the generalized Hammers
ley process@13#, particle systems in one dimension@15#, and
various generalized mass transport models@16#.

In the Takayasu model, each site of a lattice has a n
negative mass variable. Starting from an initial random d
tribution of masses, each mass hops to a nearest neighbo
~chosen at random! and aggregates with the mass there w
rate 1. In addition, a unit mass is adsorbed at every site w
rate q. While the first move tends to create big masses
diffusion and aggregation, the second move replenishes
lower end of the mass spectrum. At large timet, the mass
distribution at any site has the scaling behavior,P(m,t)
;m2t f (m/td) with d51/(22t) @17,18#. The interesting
point is that even though the average mass per site incre
linearly with time,^m&;t, the mass distributionP(m,t) ap-
PRE 611063-651X/2000/61~6!/6337~7!/$15.00
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proaches a time-independent power law distributionP(m)
;m2t for t→` @since f (0);O(1)# for any nonzero ad-
sorption rateq. The exponentt is independent ofq and is
known exactly @2#, t54/3 in one dimension andt53/2
within mean-field theory.

The steady-state mass distribution in the Takayasu mo
has the same power-law decay for any nonzero adsorp
rate q and does not undergo any phase transition. In t
paper we show that if we introduce an additional process
desorption of unit masses with ratep in the Takayasu mode
~we call this the in-out model!, a rich steady-state phase di
gram emerges in thep-q plane. In particular we show tha
the system undergoes a nonequilibrium phase transi
across a phase boundarypc(q). Nonequilibrium phase tran
sitions between steady states have been studied extens
in recent years in a variety of systems. Examples inclu
amongst others, active-absorbing phase transitions in r
tion diffusion systems@19#, roughening transitions in fluctu
ating interfaces@20#, phase transitions in driven diffusiv
lattice gas models@21#, wetting transitions in solid-on-solid
models@22#, boundary driven transitions in one-dimension
asymmetric exclusion processes@23#, and Bose-Einstein-like
condensation in models of aggregation and fragmenta
@24,25#. However, we show below that the mechanism of t
phase transition and the associated critical properties in
in-out model are very different from those of other mode
mentioned above.

There are quite a few physical systems where our in-
model may find applications. In nature there exist a vari
of systems ranging from colloids@26# to polymer gels@27#
where the basic constituents of the system diffuse and c
lesce upon contact. For example, in a polymer gel the b
constituents are polymers of different sizes which diffuse
a solution and when anm-mer comes in contact with an
n-mer, they aggregate to form an (m1n)-mer@27#. Similarly
during the growth of a thin film on an amorphous substr
~such as bismuth on carbon!, clusters or islands of atoms ca
diffuse as a whole and when two of them come closer th
coalesce@28#. A zeroth order approach to model the dynam
ics of these systems would be to replace each cluster b
point particle~ignoring its shape! carrying a positive mass
6337 ©2000 The American Physical Society
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which indicates its size or number of atoms. When two p
ticles coalesce their masses add up. In addition many of th
systems areopen in the sense that they can exchange ba
units with the adjoining environment. For example, duri
the growth of a film on a substrate, single adatoms m
adsorb on the substrate from the outside vapor or desorb
the vapor from the substrate. We attempt to incorporate th
processes on a lattice in the in-out model and show that e
this simple model has a very rich steady-state phase diag
We had introduced this model in an earlier publication@24#
and some results were briefly mentioned. In this paper
present a detailed analysis of the model.

The paper is organized as follows. In Sec. II, we defi
the in-out model precisely and summarize the differ
phases and the transitions between them. In Sec. III we s
the model analytically within mean-field theory. In Sec.
we present the numerical results in one dimension and
cuss a scaling theory which provides scaling relations
tween different critical exponents. We conclude in Sec.
with a summary and a discussion of open questions.

II. THE IN-OUT MODEL

For simplicity we define the in-out model on a on
dimensional lattice with periodic boundary conditions; ge
eralizations to higher dimensions are straightforward. E
site of a lattice has a non-negative mass variablemi>0.
Initially eachmi is chosen independently from any well d
fined distribution. The dynamics proceed as follows. A siti
is chosen at random and then one of the following events
occur.

~1! Adsorption. With probability q/(p1q11), a single
particle is adsorbed at sitei; thusmi→mi11.

~2! Desorption. With probability p/(p1q11), a single
particle detaches from and leaves sitei; thus mi→mi21
providedmi>1.

~3! Diffusion and aggregation. With probability 1/(p1q
11), the massmi at site i moves to a nearest neighbor si
@either (i 21) or (i 11)# chosen at random. If it moves to
site that already has some particles, then the total mass
adds up; thusmi→0 andmi 61→mi 611mi .

If the site chosen is empty, only adsorption can occur w
probability q/(p1q11).

The in-out model has only two parametersp and q. The
question we would like to address is this: For givenp andq,
what is the single site mass distributionP(m) in the steady
state? Note that in the limitp50 ~i.e., without the desorption
process! our model reduces to the Takayasu model m
tioned in the Introduction.

While the Takayasu model~zero desorption,p50) does
not have a phase transition in the steady-state, we find
introducing a nonzero desorption ratep induces a rich
steady-state behavior in thep-q plane. In fact, we find tha
there is a critical linepc(q) in the p-q plane. For fixedq, if
we increasep from 0, we find that for allp,pc(q), the
steady-state mass distribution has the same large-m behavior
as in the Takayasu case, i.e.,P(m);m2t where the expo-
nent t is the Takayasu exponent and is independent oq.
Thus the Takayasu phase is stable up topc . For p5pc(q),
we find the steady-state mass distribution still decays a
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braically for largem, P(m);m2tc but with a new critical
exponenttc that is bigger than the Takayasu exponentt. For
p.pc(q), we find that P(m);exp(2m/m* ) for large m,
wherem* is a characteristic mass that diverges if one a
proachespc(q) from the p.pc(q) side. The critical expo-
nent tc is the same everywhere on the critical linepc(q).
This phase transition occurs in all spatial dimensions incl
ing d51.

It is easy to write down an exact evolution equation f
the mean masŝm&(t) per site. Since the diffusion and ag
gregation move does not change the total mass, the
contributions to the time evolution of̂m& come from the
adsorption and desorption processes. It is then evident t

d^m&
dt

5q2ps~ t !, ~1!

where s(t) is the probability that a site is occupied by
nonzero mass. The first term on the right-hand side of
above equation clearly indicates the increase in mass per
due to the adsorption of unit mass. The second term qua
fies the loss in mass per site due to the desorption of
mass taking into acount the fact that the desorption can
place from a site only if the site is occupied by a nonze
mass. Let us fixp and varyq. As long asq,qc(p), it turns
out that in the long time limitt→`, the two terms on the
right-hand side of the above equation cancel each other
the occupation density reaches the asymptotic tim
independent value,s5q/p. This indicates that the averag
mass per site,̂m& becomes a constant in the long time lim
In fact, we show below that in this phase, the steady-s
mass distributionP(m);exp(2m/m* ) for large m with a
finite first moment̂ m&. We call this phase the ‘‘Exponen
tial’’ phase. However, ifq.qc(p), the occupation density
reaches a steady-state values such thats,q/p. As a result in
the long time limit, the second term on the right-hand side
Eq. ~1! fails to cancel the first term and the mean mass
site ^m&(t) increases linearly with time,̂m&;(q2ps)t.
However, as we show below, even though the mean m
diverges in this phase ast→`, the mass distribution reache
a steady state,P(m);m2t for largem wheret is the Taka-
yasu exponent~which is always less than 2 so that the me
mass diverges!. Hence we call this entire phase the ‘‘Tak
yasu’’ phase.

III. MEAN-FIELD THEORY

We first analyze the model exactly within the mean-fie
approximation, ignoring correlations in the occupancy of a
jacent sites. In that case we can directly write down eq
tions forP(m,t), the probability that any site has a massm at
time t,

dP~m,t !

dt
52~11p1q1s!P~m,t !1pP~m11,t !

1qP~m21,t !1P* P, m>1 ~2!

dP~0,t !

dt
52~q1s!P~0,t !1pP~1,t !1s~ t !. ~3!
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Here P* P5(m851
m P(m8,t)P(m2m8,t) is a convolution

term that describes the coalescence of two masses ands(t)
5(m51P(m,t) denotes the probability that a site is occupi
by a nonzero mass.

The above equations enumerate the possible way
which the mass at a site might change. The first term in
~2! is the ‘‘loss’’ term that accounts for the probability that
massm might move as a whole or desorb or adsorb a u
mass, or a mass from the neighboring site might move to
site in consideration. In this last case, the probability of
cupation of the neighboring sites(t) multiplies P(m,t)
within the mean-field approximation where one neglects
spatial correlations in the occupation probabilities of neig
boring sites. The remaining three terms in Eq.~2! are the
‘‘gain’’ terms enumerating the number of ways that a s
with massm8Þm can gain or lose mass to make the fin
massm. The second equation Eq.~3! is a similar enumera-
tion of the possibilities for loss and gain of empty sites.

To solve the equations, we compute the generating fu
tion, Q(z,t)5(m51

` P(m,t)zm from Eq. ~2! and set]Q/]t
50 in the steady state. We also need to use Eq.~3! to write
P(1,t) in terms ofs(t). This gives us a quadratic equatio
for Q in the steady state. Choosing the root that correspo
to Q(z50)50, we find

2zQ~z!5p~z21!1qz~12z!12sz2A~z21!D~z!,
~4!

where

D~z!5p2~z21!1q2z2~z21!22pqz~z21!

24qz~z2sp/q!. ~5!

Note that the occupation densitys in the above expression o
Q(z) is yet to be determined. The steady-state mass di
bution P(m) can be formally obtained fromQ(z) in Eq. ~4!
by evaluating the Cauchy integral,

P~m!5
1

2p i ECo

Q~z!

zm11
dz ~6!

over a contourCo encircling the origin in the complex plane
This expression forP(m), however, will contain the yet to
be determined unknown quantitys. In fact, determinings is
the most nontrivial part of the mean-field calculation as
show below.

In order to extract the large-m behavior ofP(m) from Eq.
~6!, one needs to deform the contourCo so that it goes
around the branch cut singularities of the functionQ(z).
From Eq.~4!, it is evident that such singularities occur atz
51 and also at the roots ofD(z)50 whereD(z) is given by
Eq. ~5!. SinceD(z) is a cubic polynomial inz, it has three
roots z1 , z2, and z3, each of which can be determined
terms of the unknown quantitys.

We now analyze the large-m behavior ofP(m) in differ-
ent regions of thep-q plane. Let us fix the value ofp and
increaseq from 0. A similar analysis can be carried out fo
fixed q as a function ofp. As we increaseq from 0, we
encounter the following three regimes.
in
q.

it
e
-

e
-

l

c-

ds
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e

~i! For smallq ~with a fixed p), we first assume that the
mean masŝ m& reaches a time-independent constant at
→`. This assumption will be justifieda posteriori. Then
from Eq. ~1! it follows that the occupation density als
reaches a steady-state value,s5q/p. Substituting this in the
expression forD(z) in Eq. ~5!, the three roots ofD(z)50 are
z151 and z2,35(p1272Ap11)/q. Then from Eq.~4! it
follows that the only branch cut singularities ofQ(z) are at
z2 andz3 with z3.z2.1 for smallq. Therefore the branch
cut at z2 essentially controls the large-m behavior ofP(m)
when the contour in Eq.~6! is deformed and by analyzing th
integral around this cut we find that for largem,

P~m!;exp~2m/m* !/m3/2 ~7!

with m* 51/lnz2. SinceP(m) decays exponentially in this
phase,̂ m& is also finite and nonzero thus justifying the a
sumption made in the beginning. In this phase the unkno
function s is therefore exactly given ass5q/p. Note, how-
ever, that this analysis is valid as long asz2.1 and the
characteristic massm* diverges asz2 approaches 1 from
above.

~ii ! As the value ofq is increased~for fixed p) the rootsz2
andz3 decrease, until at a critical valueqc(p), the value of
z2 just reaches unity. The double root (z1 andz2) at z51 of
D(z) then leads to a branch cut singularity of order 3/2
Q(z) in Eq. ~4!, which in turn implies

P~m!;m25/2. ~8!

This power-law decay characterizes the critical point and
condition z251 determines the locus of the critical line i
the p-q plane,

qc~p!5p1222Ap11. ~9!

The value ofs is given exactly bys5qc /p.
~iii ! As q is increased further@q.qc(p)# for fixed p, the

mean mass per sitêm& does not reach a time-independe
value in the steady state, but increases indefinitely with tim
Consequently we cannot use the relations5q/p anymore.
However,P(m) reaches a time-independent distribution.
the question is what is the selection principle that determi
the unknown functions in this regime?

Note that atq5qc(p), the two rootsz1 and z2 of D(z)
50 coincided,z15z251 andz3.1. As q increases further,
since we do not know whats is a priori, the exact locations
of the three roots ofD(z)50 in the complex plane are als
unknown. However, sinceD(z) is a polynomial with real
coefficients, ifz is a root ofD(z)50, so must be its complex
conjugatez* . Thus asq increases beyondqc(p), there are
two possibilities. The first possibility is that all the thre
roots ofD(z)50 are real and distinct. But in that case, asq
increases slightly beyondqc(p), at least one of them mus
become less than 1. This, however, would lead to an ex
nential growth ofP(m) for largem and hence is ruled out
The second and only possibility is that one of the three ro
must be real while the other two are complex conjugates
each other, i.e.,D(z)5(z2zc)(z2zc* )(z2z3) where z3 is
real andzc in general is complex with its real part less tha



d
al

nd

r-
to

-
t

o

e

an

ow

ce

nt

ri-
an-
l

d,

e-

e iti-

6340 PRE 61MAJUMDAR, KRISHNAMURTHY, AND BARMA
1. However, if the imaginary part ofzc is nonzero, this again
can be shown to lead to an exponential divergence ofP(m)
for largem. Therefore, we are led to the conclusion thatzc
must be real and thusD(z)50 must havedoubleroots atzc ,
i.e., D(z)5(z2zc)

2(z2z3) with zc real. In summary we
conclude that forq.qc(p), z3 remains greater than 1 an
the two rootsz15z25zc continues to be coincident and re
but the common valuezc decreases below 1 asq increases
beyondq.qc(p). This nontrivial ‘‘root sticking’’ condition
determines the unknown quantitys for q.qc(p). This con-
dition of double roots can be easily implemented by dema
ing the two conditions,D(zc)50 andD8(zc)50 whereD8
5dD(z)/dz. Also using the relationD(z)5(z2zc)

2(z
2z3) in Eq. ~4!, we find that the lowest branch cut singula
ity of Q(z) is atz51. This order 1/2 singularity then leads
the following asymptotic behavior ofP(m):

P~m!;m23/2. ~10!

Thus this entire phase,q.qc(p), is characterized by the
same power-law decay ofP(m) as in the mean-field Taka
yasu model which, as mentioned earlier, corresponds to
zero-desorption (p50) limit of our model.

As mentioned above, the ‘‘root-sticking’’ condition als
determines quite nontrivially the occupation densitys for q
.qc(p) for fixed p. To determines explicitly for q.qc(p)
using this condition, let us fixp51 for simplicity even
though the calculation can be carried out for any arbitraryp.
From Eq.~9!, we find qc5322A2 for p51. We first sub-
stitute the expression forD(z) from Eq. ~5! in the ‘‘root-
sticking’’ conditions, D(zc)50 and D8(zc)50. We then
eliminate zc from these equations and finds(q) for q.3
22A2 as the only positive root of the cubic equation

16s32~q2212q124!s22~q315q2157q115!s

1~q315q2139q22!50. ~11!

Thus we can determine the unknown quantitys exactly ev-
erywhere in thep-q plane. In Fig. 1, we plot the function
s(q) for fixed p51. For q<qc5322A2 we haves(q)5q

FIG. 1. The functions(q) as a function ofq for p51 ~shown by
the solid line! within the mean-field theory. It deviates from th
dotted line@s(q)5q# for q.qc5322A2.
-

he

and for q.qc5322A2, s(q) is given by the real positive
root of the cubic equation in Eq.~11!.

Note that for fixedp, if q.qc(p), the steady-state valu
of s(q) ~as determined from the ‘‘root-sticking’’ conditions!
is less thanq/p and hence from Eq.~1!, we find that the
mean mass per site increases linearly with time,^m&'vt for
large t. If one interprets the mass profile as the height of
interface ~see Sec. V! then for q,qc(p), the average
‘‘height’’ of the interface becomes a constant ast→`, while
for q.qc(p), the average height^m& increases linearly with
velocity v. The ‘‘velocity’’ v, defined more precisely asv
5 limt→`(^m&/t), is 0 for q,qc(p) and nonzero forq
.qc(p). For q slightly bigger thanqc(p), v;@q2qc(p)#y,
wherey is a critical exponent independent ofp. For example,
for p51, we find from Eq. ~11!, v'@q2qc(1)#2/(6A2
28), indicating thaty52 within mean-field theory.

IV. NUMERICAL RESULTS IN ONE DIMENSION
AND SCALING THEORY

Having completed the mean-field calculations we n
turn to one dimension~1D!. While the Takayasu model (p
50) is exactly solvable ind51 @2#, the same technique
unfortunately does not work forp.0. Hence for nonzerop,
we had to resort to numerical simulations ind51. The quali-
tative predictions of mean-field theory, namely the existen
of a power-law ~Takayasu! phase @P(m);m2tT# and a
phase with exponential mass distribution, with a differe
critical behavior at the transition@P(m);m2tc#, are found
to hold in 1D as well. Figure 2 shows the results of nume
cal simulations for the phase diagram along with the me
field prediction@Eq. ~9!# and Fig. 3 displays the numerica
data for the decay of the mass distributionP(m) in the two
phases and at the transition point. The values obtainet
54/3 ~same as the exactly solvablep50 case! and tc
.1.833, are quite different from their mean-field valuest
53/2 andtc55/2, reflecting the effects of correlations b
tween masses at different sites.

If the phase boundary is crossed by increasingq for fixed
p, the Takayasu phase is obtained forq.qc . As a function
of the small deviationq̃[q2qc and large timet, the mass

FIG. 2. The phase diagram of the in-out model in thep-q plane.
The dotted line denotes the mean-field phase boundaryqc(p)5p
1222Ap11 and the triangles mark the numerically obtained cr
cal points in 1D.
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distribution P(m,q̃,t) is expected to display a scaling form
for largem,

P~m,q̃,t !;
1

mtc
YS mq̃f,

m

taD ~12!

in terms of three unknown exponentsf, a, tc , and the two
variable scaling functionY. All other exponents then can b
related to these three exponents via scaling relations.
give some examples below.

~a! Consider q̃.0 and t→` limit. Then P(m,q̃)
;(1/mtc)Y(mq̃f,0). But we know that forq̃.0, in the
steady stateP(m,q̃);m2t, wheret is the known Takayasu
exponent. This forces the scaling functionY(x,0);xg for
largex such thatP(m,q̃);q̃fg/mtc2g, indicatingg5tc2t.

~b! Consider againq̃.0 and finite but larget. The mean
mass per site,̂m&5*mP(m,q̃,t)dm;q̃yt, where y is the
velocity exponent. Using the scaling form ofP, we find y
5f@12a(22tc)#/a.

~c! Next we consider the critical point,q̃50. Using the
scaling form, we find that the mean mass^m&;tz for larget
wherez5a(22tc) providedtc,2. If tc.2 ~as in mean-
field theory!, z50. Also, the root mean square mass fluctu
tions at the critical point,s5AŠ(m2^m&)2

‹;A^m2&;tb for
large t with b5a(32tc)/2. Note that for larget, ^m2&
@^m&2 indicating that fluctuations grow faster than the me
as time increases.

Within mean-field theory, by analyzingP(m) explicitly
for q̃.0, we find P(m,q̃);q̃/m3/2 and alsotc55/2. From
~a! above, this immediately givesgf51 andg51, indicat-
ing f51. Also, we had shown before that the velocity e
ponenty52 exactly within mean-field theory. Usingy52,
tc55/2, andf51 in ~b!, we geta52/3. Sincetc55/2.2,
we note from~c! that z50. Also we find the fluctuation
exponentb51/6 from the scaling relation in~c!. Thus within
mean-field theory, we find

FIG. 3. The steady-state mass distributionP(m) vs m for the
in-out model in 1D. The value ofq is kept fixed atq51 and the
data are shown for three representative values ofp, respectively,p
is less than, equal to, or greater thanpc.2.35.
e

-

n

P~m,q̃,t !;
1

m5/2
YS mq̃,

m

t2/3D . ~13!

We have determined the corresponding exponents id
51 numerically. The critical exponenttc.1.83 has already
been mentioned~see Fig. 3!. In Fig. 4 we plot the velocityv
as a function ofq for fixed p52.35. The velocity is zero for
q<qc'1.0 and increases as a power law,v;(q2qc)

y for
small q̃5(q2qc). We findy.1.47. Note that sinceqc is not
known exactly, this exponent is difficult to determine n
merically and is subject to large error bars. We also find t
at the critical pointqc'1, the mean mass grows as^m&
;tz with z.0.12. Note the difference from the mean-fie
theory where^m& does not grow with time at the critica
point (z50). To measure the fluctuations at the critic
point, we performed finite-size studies of the time-depend
width W2(t,L)5( i 51

L (mi2^m&)2/L at the critical point,
where L is the system size. This is expected to obey
scaling formW.tbZ(t/Lz); the value ofz is expected to be
2 as the movement of masses is diffusive. Figure 5 shows

FIG. 4. The velocityv as a function ofq for fixed p52.35 in
1D. The velocity is zero forq,qc.1.0 and increases as (q2qc)

y

for q.qc with y.1.47 ind51.

FIG. 5. Scaling plots of the finite-size studies of width vers
time for four different system sizesL516, L532, L564, andL
5128 at the critical pointpc'2.352 with fixedq51. The width is
expected to follow the scaling formW'tbZ(t/Lz). The best col-
lapse is obtained forb.0.358 withz52.
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scaling plot ofW/tb versust/Lz for four different system
sizesL516, 32, 64, and 128 at the critical pointp'2.35 for
fixed q51. We fixz52 and find the best collapse of data f
b.0.358. These exponent estimates ind51 are consisten
with the scaling relations mentioned in~a!–~c!.

V. SUMMARY AND DISCUSSION

In this paper we have studied a simple lattice mo
where masses diffuse and aggregate with rate 1, unit ma
adsorb at any lattice site with rateq, and unit masses desor
from a site~provided the site is occupied by a mass! with rate
p. For p50 ~without the desorption process!, our model re-
duces to the well studied Takayasu model where the ste
state single site mass distribution has a power-law de
P(m);m2t for large m for any nonzeroq. We show that
varying the desorption ratep induces a nonequilibrium phas
transition at a critical valuep5pc(q). For p,pc(q),
P(m);m2t for largem as in the Takayasu (p50) case. For
p5pc(q), P(m);m2tc where tc is a new exponent and
P(m);exp(2m/m* ) for p.pc(q). We have solved the
model analytically within the mean-field theory and calc
lated all the mean-field exponents exactly. In one dimens
we have computed the exponents numerically. We have
presented a general scaling theory.

Our model generalizes the Takayasu model and exhib
nontrivial phase transition. There was an earlier general
tion @29# of the model where instead of carrying positiv
masses, the diffusing particles carried chargesQ of either
sign while a random chargeI, drawn from an arbitrary dis-
tribution, was added with rateq to a lattice site. In this
‘‘charge’’ model, the steady-state single site charge distri
tion P(Q) was found@29# to have a power-law tail~as in the
mass case!, P(Q);Q2t for large positiveQ when the mean
charge injected was positive,^I &.0 whereas for̂ I &50,
P(Q);Q2t1 for large positiveQ. It was shown that the
exponent t155/3 in d51 and t152 within mean-field
theory @29#. Though this change of exponent at a critic
value^I &50 is similar to that in our model qualitatively, th
exponenttc of the in-out model is very different from that o
the charge model. This difference can be traced back to
mass positivity constraint in the in-out model, i.e., the d
sorption of a unit mass can take place from a lattice site o
if the site has a nonzero mass.

In the in-out model, the total mass is not conserved du
the moves involving adsorption and desorption of unit ma
It is interesting to ask what would happen if the desorption
a unit mass from a site were followed by adsorption a
neighboring site, so that the total mass would be conser
in every move. This was investigated using a lattice mo
@24# and earlier within a rate equation approach@25#. In this
conserved-mass model there is also a phase transition, b
a different character. It was found that there is an exponen
phase~at a high desorption-adsorption rate!, separated by a
critical line from a phase with a power-law mass distributi
P(m);m2tconserved. This distribution coexists with an infinite
aggregate which accommodates a finite fraction of the t
mass—a real space analog of Bose-Einstein condens
@24#. The exponenttconserved was found to be 5/2 within
mean-field theory@24,25# and .2.33 in 1D @24#, and the
same exponent was found to describeP(m) at the critical
l
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point. Evidently, the lack of mass conservation in the in-o
model is responsible for the absence of the infinite aggreg
in its highq phase, as well as the change in the power tot in
the Takayasu phase andtc at criticality.

Another interesting difference between the conserved
the in-out model is the effect of a preferred direction for t
motion of masses~a mass at sitei hops with a higher prob-
ability to i 21 thani 11). We have checked that such a bi
does not change the critical exponents of the in-out mo
However, for the conserved mass model, the bias in direc
changes the value of the exponents at the transition an
the aggregate phase@24#.

The phase transition in the in-out model has some in
esting implications for nonequilibrium wetting transitions
we interpret the configuration of masses as an interface
file regardingmi as a local height variable. Although th
dynamics of the mass profile in our in-out model is n
physical when interpreted as interface dynamics, never
less the phase transition in our model can be qualitativ
interpreted as a nonequilibrium wetting transition of the
terface. In the in-out model, the fact that the mass at each
is necessarily non-negative translates into the restriction
the mass profile is always above a wall at a fixed height~in
our case 0). The presence of this constraint is the key fa
for the wetting transition. At fixedp, as we increaseq, the
mean height̂ m& does not grow with time as long asq
,qc . This is our ‘‘Exponential’’ phase where the mass
the interface profile is bound to the substrate at zero hei
This phase is also ‘‘smooth’’ as the mean square height fl
tuation does not grow with system size. Forq.qc , the in-
terface unbinds from the substrate and the mean height^m&
;vt grows linearly with time with a velocityv. This phe-
nomenon is similar to the ‘‘wetting’’ or ‘‘depinning’’ of in-
terfaces in general. In this ‘‘wet’’ phase~the Takayasu phas
in our model!, the interface is rough. Unlike recently studie
models of nonequilibrium wetting, where the interface in t
growing phase is self-affine@22,30#, our model describes a
much rougher interface forq.qc . At the transitionq5qc ,
though, the interface is self-affine with a roughness expon
x5zb.0.7.

There are various open questions that remain to be set
In this paper we have only studied the phase transition in
steady-state single site mass distribution function. It wo
be very interesting to study the spatial correlations betw
masses at different sites and to track the behavior of a m
mass correlation function as one crosses the phase boun
in the p-q plane.

Also in this paper we have only studied the simple
model where the rates of adsorption, desorption, and hop
are constants and independent of particle mass. An impor
question is whether this phase transition would persist
general mass-dependent rates. In earlier work@31# a model
with aggregation, adsorption, and desorption was stud
but no transition to a power-law phase was found; the diff
ence is traceable to the fact that in that model, the rate
removal of mass is proportional to the mass, unlike the u
mass desorption process considered in the in-out model.
therefore highly desirable to identify the class of models w
mass-dependent rates where the phase transition desc
here will persist.
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